top of page

Latest research:

Our paper on response heterogeneity in ELL pyramidal cells is out:

Descending pathways increase sensory neural response heterogeneity to facilitate decoding and behavior

Michael G. Metzen and Maurice J. Chacron

The functional role of heterogeneous spiking responses of otherwise similarly tuned neurons to stimulation, which has been observed ubiquitously, remains unclear to date. Here, we demonstrate that such response heterogeneity serves a beneficial function that is used by downstream brain areas to generate behavioral responses that follows the detailed timecourse of the stimulus. Multi-unit recordings from sensory pyramidal cells within the electrosensory system of Apteronotus leptorhynchus were performed and revealed highly heterogeneous responses that were similar for all cell types. By comparing the coding properties of a given neural population before and after inactivation of descending pathways, we found that heterogeneities were beneficial as decoding was then more robust to the addition of noise. Taken together, our results not only reveal that descending pathways actively promote response heterogeneity within a given cell type, but also uncover a beneficial function for such heterogeneity that is used by the brain to generate behavior.

Recent Publications

graphicalAbstract_iScience.tif

Descending pathways increase sensory neural response heterogeneity to facilitate decoding and behavior

Metzen MG & Chacron MJ

archive:

News

Our paper on feedback has been mentioned on the Canadian Association For Neuroscience (CAN-ACN) webpage. Read full press release.

Archive
  • ResearchGate
  • Twitter Social Icon

Michael G Metzen, PhD

bottom of page